Power factor monitoring $(\cos \varphi)$ in 1- or 3-phase

Loadmonitors - GAMMA series

Multifunction
Fault latch
Recognition of disconnected consumers
Suitable for VFI (10 to 100 Hz)
Supply voltage selectable via power modules
2 change-over contacts
Width 22.5 mm
Industrial design

Technical data

1. Functions

Load monitoring ($\cos \varphi$) in 1- or 3-phase mains with adjustable thresholds, timing for start-up supression and tripping delay separately adjustable and the following functions which are selected by means of rotary switch:
OVER
OVER+LATCH
UNDER
UNDER+LATCH
WIN
WIN+LATCH

Overload monitoring
Overload monitoring with fault latch Underload monitoring
Underload monitoring with fault latch Monitoring the window between Min and Max Monitoring the window between Min and Max with fault latch

2. Time ranges

Start-up suppression time: Tripping delay:

Adjustment range
1s 100s

3. Indicators

Green LED ON:
Green LED flashes: Yellow LED R ON/OFF: Yellow LED I=0 ON/OFF: Red LED ON/OFF:

Red LED flashes:
indication of supply voltage indication of start-up supression time indication of relay output indication of disconnected consumers indication of failure of the corresponding threshold
indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20
Tightening torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circuit

Supply voltage:

12 to 400 V a.c.

Tolerance:
Rated frequency:
Rated consumption:
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1-A2 (galvanically separated) selectable via power modules TR2 according to specification of power module according to specification of power module 2VA (1.5W)
100\%
500 ms
$>30 \%$ of the supply voltage III (in accordance with IEC 60664-1) 4kV

6. Output circuit

2 potential free change-over contacts
Rated voltage: $\quad 250 \mathrm{~V}$ a.c.
Switching capacity: $\quad 750 \mathrm{VA}(3 \mathrm{~A} / 250 \mathrm{~V}$ a.c.)
If the distance between the devices is less than 5 mm !
Switching capacity: 1250VA (5A / 250 V a.c.)
If the distance between the devices is greater than 5 mm !
Fusing: $\quad 5 \mathrm{~A}$ fast acting
Mechanical life: 20×10^{6} operations
Electrical life: 2×10^{5} operations
Switching frequency:

Overvoltage category:
Rated surge voltage:
7. Measuring circuit

Measured variable:
Measuring input voltage:
1-phase mains
3-phase mains
Overload capacity:
1-phase mains
3-phase mains
Input resistance:
Measuring input current:
Overload capacity:
Input resistance:
Switching threshold $\cos \varphi$
Max:
Min:
Overvoltage category:
Rated surge voltage:
9. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:
9. Ambient conditions

Storage temperature: -25 to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity:
Pollution degree:
Vibration resistance:
Shock resistance:

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1) -25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
a.c. Sinus $(10$ to 400 Hz$)$

40 to 415 V a.c. (300V against ground)
terminals L1i-L2/L3
3~ 40/23V to 415/240V, terminals L1i-L2-L3
500 V
3~ 500/289V
$\geq 1 \mathrm{M} \Omega$
0.5 to 10A, terminals L1i-L1k
($1>8 \mathrm{~A}$ distance $>5 \mathrm{~mm}$)
12A permanently
$5 \mathrm{~m} \Omega$
0.2 to 1.0
0.1 to 0.99

III (in accordance with IEC 60664-1)
4 kV
$\pm 5^{\circ}$ (equivalent to 5% at $\cos \varphi=0.8$)
$\leq 5 \%$ (at $\cos \varphi=0.8$)
$\pm 1.8^{\circ}$ (equivalent to 1.8% at $\cos \varphi=0.8$)
$\leq 0.1 \% /{ }^{\circ} \mathrm{C}$
-25 to +70 c
15% to 85%
(in accordance with IEC 60721-3-3 class 3K3)
3 (in accordance with IEC 60664-1)
10 bis 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms
(in accordance with IEC 60068-2-27)

Functions

When the supply voltage U is applied, the output relays switch into on-position (yellow LED R and LED I=0 illuminated) and the set interval of the start-up suppression (START) begins (green LED U flashes). Changes of the measured power factor $(\cos \varphi)$ during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily. For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured power factor was chosen to be greater than the maximum value.

Overload monitoring (OVER, OVER+LATCH)

When the measured power factor exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED R not illuminated). The output relays again switch into on-position (yellow LED R illuminated), when the measured power factor falls below the value adjusted at the MIN-regulator (red LED MAX not illuminated). If the fault latch is activated (OVER+LATCH) and the measured power factor remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor falls below the value adjusted at the MIN-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Underload monitoring (UNDER, UNDER+LATCH)

When the measured power factor falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED R not illuminated). The output relays again switch into on-position (yellow LED R illuminated), when the measured power factor exceeds the value adjusted at the MAX-regulator. If the fault latch is activated (UNDER+LATCH) and the measured power factor remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor exceeds the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Window function (WIN, WIN+LATCH)
The output relays switch into on-position (yellow LED R illuminated) when the measured power factor exceeds the value adjusted at the MIN-regulator. When the measured power factor exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED R not illuminated). The output relays again switch into onposition (yellow LED R illuminated) when the measured power factor falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured power factor falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into offposition (yellow LED R not illuminated).

If the fault latch is activated (WIN+LATCH) and the measured power factor remains below the MIN-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor exceeds the value adjusted at the MIN-regulator. If the measured power factor remains above the MAX-value longer than the set interval of the tripping delay, the output relays remain in the off-position even if the measured power factor falls below the value adjusted at the MAX-regulator. After resetting the failure (interrupting and re-applying the supply voltage), the output relays switch into onposition and a new measuring cycle begins with the set interval of the start-up suppression (START).

Recognition of disconnected consumers
When the current flow between L1i and L1k is interrupted (yellow LED $\mathrm{I}=0$ illuminated) and no fault has been stored the output relays switch into on-position resp. remain in on-position (yellow LED R illuminated). When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up suppression (START).

Connections

Connected to $3 \sim 400 \mathrm{~V}$ mainswith power module 24 V a.c. without fault latch $\mathrm{I}_{\mathrm{N}}<10 \mathrm{~A}$

Connected to 1~230V mains with power module 230 V a.c. without fault latch $\mathrm{I}_{\mathrm{N}}<10 \mathrm{~A}$

Connected to $3 \sim 400 \mathrm{~V}$ mains with power module 400 V a.c. and fault latch $\mathrm{I}_{\mathrm{N}}<10 \mathrm{~A}$

Connections

Connected to $3 \sim 400 \mathrm{~V}$ mains with power module 400 V a.c. and fault latch $\mathrm{I}_{\mathrm{N}}>10 \mathrm{~A}$

Dimensions

